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Abstract. Equilibrium crystal shapes are defined uniquely by the Wulff construction. The 
classical kinematic theory of crystal growth, due mainly IO Frank and Chernov. provides a 
mathematically equivalent prescription for the limiting growth shape. To connect these two 
well studied states, we derive a local geomeaic growth model and examine the rransienr shape 
evolution of an equilibrium form containing both facets and mugh regions. Our model is 
appropriate to the weakly driven growth of a two-dimensional single crystal with n-gonal 
symmetry and arbitrary closed initial shape. The model links disparate kinetic professes 
determined by the local interfacial StNCtUIe to the isotropic growth drive, and reproduces the 
experimentally observed transition from a partly rounded equilibrium shape to a highly faceted 
crystal which we term ‘global kinetic faceting’. We solve for the transient shape dynamics 
globally, and locally. and in the latter case present a curvature evolution equalion valid for any 
local growth law. Both approaches show that, during kinetic faceting, rough orientations grow 
out of existence with decrearing curvature. 

1. Introduction 

Spatiotemporal pattern formation in condensed matter systems has broad technological and 
scientific interest, with theoretical analogues in hydrodynamic, chemical and biological 
systems [l]. The example of crystal growth shapes is important in many areas of physics, 
materials science, physical chemistry, and geophysics. The theoretical approaches to the 
study of growth shapes depend on whether the interfacial motion is controlled by long- 
range diffusion or by local processes. It is known that local growth kinetics depend 
on local interfacial free energy and microscopic structural considerations in the particular 
crystallographic orientation, but the manner in which they determine the global (E the entire 
close surface) crystal shape is often treated ad hoc. The geometry of phase boundaries, or 
interfaces between grains of the same phase, is of interest in many contexts [Z]. Studying 
the case of a single crystal growing from a pure nutrient phase has the advantage of laying 
bare the essential physics and analysis common among them. 

Two broad classes of growth models exist: geometric and non-geometric. Geometric 
models are appropriate when the interfacial growth velocity may be determined solely 
by local interfacial parameters, decoupled from diffusional or other long-ranged influences. 
Hence instabilities associated with diffusional growth are precluded. Geometric models have 
been reviewed by Taylor et al 131, and in addition to their intrinsic mathematical interest 
[4], they have successfully treated crystal growth, phase-antiphase boundary motion, grain 
growth, and stress-driven-zone migration, among others. Taylor et a1 [3] view a model 
as geometric if the normal velocity V at an interfacial point depends on the shape and 
position of the interface, and not on field variables modified by the interface motion or 

0305-4470/94/175957+11$19.50 @ 1994 IOP Publishing Ltd 5957 



5958 J S Wettlaufer et a1 

long-range diffusion in the bulk. We consider geometric models in  the sense that only the 
shape, and shape-dependent quantities of the interface determine the motion. Non-geometric 
models generally treat growth on surfaces that are everywhere rough [5]t, with anisotropy 
introduced into the interfacial conditions of a particular free boundary problem. Classical 
normal growth theories of molecular attachment kinetics treat a single interfacial state- 
faceted (= high symmetry) or rough, or the transition between them, but not the coexistence 
of different surface structures [6]. The anisotropy of specific surface free energy determines 
the equilibrium crystal shape, while the growth shape is also affected by the anisotropy 
of the mobility or kinetic coefficient. Using a Ginzburg-Landau model, Siegert [7] has 
shown this from the resulting Allen-Cahn (or Langevin-type) equation with noise, wherein 
the surface stiffness is anisotropic, but continuously differentiable and so cannot treat the 
problem of an initial shape which contains orientations below their roughening temperatures. 
Hence. to treat this case, we pursue a kinematic theory for anisotropic growth. 

b 
Figure 1. The boundary (full lines) of the equilibrium crystal 
shape. W,, formed from the Wulff consmcdon which is the 
interior envelope of the set of perpendiculars to ndial rays 
intersecting the polar plot of surface free energy (lighter lines). 
We take this initial shape away from equilibrium according 
to our growth model. but stress that. since our theory is 
kinematic. the initial shape need not be an equilibrium shape. 

The equilibrium crystal shape is that which minimizes the orientation-dependent total 
surface free energy per unit area for the volume it contains, and is determined uniquely 
from Wulffs construction [lo]. It may be helpful to recall the salient points here. The 
boundary of the shape, W,, is given by 

(1) 
where y ( n / )  represents the surface free energy per unit area in the specified orientation 
of the surface unit normal vector N ,  and P defines a radial vector from the origin to 
the equilibrium crystal surface (e.g. [3,9, IO]). The construction shows that shapes are 
geometrically similar, with a size determined by the thermodynamic conditions of the 
problem (given by the Lagrange parameter in the standard variational thermodynamics). 
Equilibrium forms may be fully faceted, everywhere rough, or may consist of both interfacial 
structures. An example of the latter is given in figure 1. Previously, we presented 
a phenomenological model [9] for growth shapes which was based on the kinetically 
constrained minimization of surface free energy. Motivated by the fact that the relaxation 
rate at rough orientations can be negligible compared to that on facets, we took the shape 
of figure 1 very slightly away from equilibrium. In this limit, the facets are pinned, and 

t Unless the boundvy layer hypothesis is invoked, diffusion-limited growlh is not geometric because the interfacial 
motion depends on the interfacial value of the field variable(s) which m modified by diffusion. in diffusion-limited 
gmwh. anisotropy is ascribed to an orientation dependence in the surface tension 01 the kinetic coeffi&nt. or to 
both. 

W, = ( T :  T . N =  r ( N )  V NI 
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the rough orientations accrete mass to take the Wulff shape of an ‘equilibrium’ crystal of 
increasing size. 

Similarly, Chernov [ 1 I] (see also [9) has extended Frank’s picture to observe that the 
steady-state growth shape which is spatially bounded at each time has a boundary WV 
which can be written as 

- wv = {r : r . N =  V(N)  V N }  (2) 
where V(N)  is the growth rate in the normal direction N .  The sequence of limiting growth 
shapes is given by a simple expansion with time. The shape WV can be related to Frank‘s 
[SI polar plot of slowness N/V(N)  [3]. The shape of the polar plot of V(N)  determines 
the nature of growth anisotropy and the stru,cture of Wv. 

In this presentation we take an equilibrium shape W,  which contains both facets and 
rough orientations, and investigate its evolution toward the limiting shape WV. We begin 
with the equilibrium shape, since it experiences the least activation barrier and is therefore 
most likely to be nucleated. However, our approach can be applied to ‘ay closed convex 
initial shape. 

In the next section we present a vector evolution equation for an arbitrary V ( N ) ,  and 
then derive a local growth rule for an arbitrary initial shape of n-gonal symmetry. Following 
this we use the model to study a specific example. Finally, we analyse a scalar evolution 
equation for local curvature that is derived from the vector evolution equation for the curve. 
Both equations possess analytic solutions, from which we deduce systematic behaviour 
applicable to experimental observations. 

. .  - .  

2. The growth rule 

We follow the motion of each point of an equilibrium shape under weak growth drives Sp, 
the chemical potential difference between the surface and the nutrient phase, where the cost 
of advancing the interface in faceted directions is high relative to the available driving force. 
The previous model [9] motivates the present one, based on the familiar tenet that there is 
a range of Sp for which there exists a nucleation barrier to accretion at faceted orientations 
which is not present at rough orientations [6,11]. Thus the crystal is at a temperature below 
the roughening transition of its faceted orientations, and under a growth drive too weak to 
induce kinetic roughening, allowing us to treat growth in a regime far from standard surface 
phase transitions [12]. 

To derive our model we consider a crystal that is uniformly bathed in a homogeneous 
nutrient phase. On imposition of a weak growth drive, interfacial processes control the 
rate of advance of the solid phase. Normal motion at facet orientations is limited by the 
generation of step sources for new layers. Here we restrict attention to those generated 
by two-dimensional nucleation of solid clusters, though we stress that our formalism can 
accomodate the other step generation mechanisms. The formation of a nucleated step source 
requires the coalescence of many molecules in a cluster for which the edge to surface free 
energy ratio favours spreading at a given drivet. The generation of new layers is a thermally 
activated process with a nucleation frequency I per unit facet area of the typical Maxwell- 
Boltzmann form, I M exp(-na2/kT6p). where a is the free energy of a critical nucleus 
on the facet (e.g. Weeks and Gilmer [6]). Thus, the normal growth rate is Vf = a I A ,  

t The free energy change of the facetlsource system (with i~ molecules) on introduction of the nucleus of i 
molecules is AG = AG, - T A & ,  where AGi is the free energy of formation of the nucleus. and A$ is the 
configurational entropy associated with the reorganization of i molecules from the vapour to the solid. Since 
i / i T  c< I we can approximate AG = AGi. 
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where 2 is the lattice constant and A is the typical facet area. We treat the case in which 
the nucleus spreading velocity is so large that a nucleated layer covers the facet before the 
subsequent nucleation event occurs. Moreover, owing to the finite facet size relative to 
fluctuations which can initiate kinetic roughening [12], experiments clearly exhibit singular 
growth in this mode. We stress that this is not the case for an infinite facet, or when the 
facet size is less than the correlation length of the surface [IZ]. We also emphasize that & 
is less than the facet growth rate by a mechanism involving multiple nuclei (e.g. equation 
(36) of [U]). Steps are already present at molecularly rough surface orientations, so that 
growth occurs by random encorporation of nutrient molecules onto the surface; here there 
is a linear response to a small driving force V, m Sp [6]. Thus, our initial shape will 
evolve due to (i) slow normal growth of facets by nucleation and spreading of monolayers, 
(ii) relatively fast normal growth of molecularly rough regions, and (iii) the coupling of 
the above, wherein the normal growth of the non-singular regions is modified by surface 
diffusion of admolecules away from the facets. 

The essential idea is to develop an expression for the local normal velocity at each 
point of the interface, and to evolve the global shape under growth resulting from the 
coexistence of the local kinetics described above. For simplicity we treat the overall shape 
problem in a two-dimensional symmetric cross section through the crystal, while noting 
that shape evolution of two-dimensional forms is itself of experimental relevance [14-181. 
We model the interface with a closed curve C[x(u,  t ) ,  y(u ,  r)] in the plane having time- 
dependent components parametrized by a variable U. The arclengths s and U are related 
by s ( u , ~ )  = &" lac(d,t)/au'ldd. we  let w = lac(u,t)/aul SO that CIS = Wdu. 
We let b' denote the angle between the positive x-axis and the unit tangent vector 
I = (cos@), sin(@)) = W-'aC/au. The unit normal N is inward pointing. Our evolution 
equation will have the form 

J S Wetrlaufer et a1 

= - V N  (3) 

where V = V ( 0 ,  Sp) is a normal velocity function under the drive Sp. 

as motivated above. The normal growth rate at facet orientations is written as 
Now we define a local normal velocity V ( 8 ,  Sp) which continuously blends V, and V, 

whereas for non-singular orientations we express the linear response to the growth drive as 

where p is an even integer. The second term of V, models the contribution to the normal 
interfacial motion at vicinal and rough orientations due to surface migration of admolecules 
away from facets. This is in analogy to the results of solid-on-solid models [18] wherein 
it is found that surface diffusion currents of admolecules away from singular orientations 
increase with surface slope, saturate at a maximal value, and at a slope controlled somewhat 
by finite-size effects, decrease abruptly to zero. The latter slope is ascribed to a grooved 
surface state, and we tie this to the roughest orientations on our shape at a given time., Our 
representation is the simplest form capturing this growth process in the continuum limit 
[W. 

A 'kinematic observer' moving on the surface of the crystal will see activated growth 
at singular orientations, and a transition to rough growth kinetics while walking away from 
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Figure 2 Polar plots of V(B. 6p) for (a) m = p = 2, (b) m = 4, p = 2. v(e. 6p) controls the 
evolution of the initial crystal shown in figure 1 and in figure 3(a), where we take m = p = 2. 

singular faces. We join these disparate kinetic processes into a complete local normal 
velocity function for n-gonal symmetry via a transition function e@) 

v(e.8~)  = v “ e )  + w, m i  - <(e)). (6) 
The function 5 governs the transition between facet-lie and rough-like growth. Its essential 
properties are: < is periodic in 2n/n, 1 6 + n / n )  = 0, where 
6, is a facet orientation. FOI the examples in this paper, we make the simple choice of the 
transition function { (e )  = cosm(ne/2), where m is even and m 2 p to preserve the n-gonal 
symmetry. We include two parameters m and p in our model which may be determined by 
experiment. The function g(6p)  and the mobilities c , .~  may also depend on other pammeters 
[ZO], but the essential point is that for a given Sp, Vf << V,. Similarly, other geometric 
growth models (e.g. [3,4] (Angenent and Gurtin)) represent anisotropy as a product of an 
orientation-dependent mobility and a linear combination of a bulk phase-change contribution 
and weighted mean curvature, itself a linear combination of y ( N )  and y”(N). Polar plots 
of V(0 ,Sp)  are shown in figure 2. 

3. Solution and example 

An initial value problem for (3) with V given by (6) can be solved exactly using the 
method of characteristics [3]. The method of characteristics is applicable to interface- 
motion problems when the normal velocity depends explicitly on surface orientation alone 
(at a given driving force) and not on the interface position or derivatives such as curvature 
(e.g. [4] Brower et a[). The characteristics for this class of problems are straight rays, 
one emanating from each point of the initial curve. These characteristics have the form 
~ ( t )  = q+rd(&), where 00 is a point on the initial curve and d is a direction vector whose 
value is determined by the velocity V(&) at XO. The surface normal direction is preserved 
along each characteristic. Thus the curve C at time f is given by the set of all points m(t ) .  

Figure 3 presents the resulting growth sequence when the initial equilibrium shape 
(given in figure I )  contains both facets and rough regions. The initial shapes are constructed 
explicitly from Wulffs theorem (W, from (1)). Note that the facets spread to dominate the 
growth shape, broad vicinal regions form, and the rough orientations grow out of existence 
with decreasing curvature. This type of faceting can only occur under an imposed growth 
drive and we term this ‘global kinetic faceting’. It is the global (the entire closed surface) 
effect of local dynamics, as distinct from equilibrium faceting or local kinetic faceting that 
has been observed on crystals grown from solutions [21]. The curvature decrease at rough 
orientations during this transition is consistent with notions of critical nucleation size [9], 

< 0, and :(er) = 1, 
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I 

t 
0.1 0.2 0 . 3  0 . 4  0 . 1  

Flgure 3. ( a )  A sequence of growth shapes at times t = 0.0.018.0.038,0.068.0.35 of the uppet 
right quadrant of a cryslal with cubic (n = 4) symmetry, m = p = 2, c,Sp = I ,  V&) = 0.01. 
The units are arbimy. (a) The initial (t = 0) equilibrium shape. W,. is formed by in the 
Wulff construction and shown in figure 1. The inset shows the full crystal shape at the same 
times. Note that the rough orientations grow out of existence with a decreasing curvature, and 
that there are sharp joints where the vicinal regions join the rough regions. The C U N ~ ~ W S  at 
8 = nf4 for I = 0.0.018.0.038.0.068 are 4,3.7,3.4,3.1 (the numerical values agreeing with 
the exact solutions to (7) to one significant figure [ZS]). As growth progresses. the crystal loses 
orientations, until it is fully faceted and possesses only four orientations. Note that growth at 
the facet orientations is so slow that individual time steps are represented by fractions of a line 
width on this scale. The final shape is geometrically equivalent to that given by Wv of (2). and 
thal mnsrmcted from the polar plot of V V ,  thereby showing the transient evolution between 
W, and Wy.  (b). Here we draw the characteristics to illuslrate the method of solution and the 
point that the charaneristics me trajectories along which thc surface n o d  is conserved. 
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and contradicts the common intuition that curvature will increase at orientations where the 
normal velocity is greatest. Also, consistent with experimental observations p3-251, the 
edges of the facets become sharper and more visible during the transition. Finally, the steady 
state that our model captures is equivalent to that obtained by Chernov’s construction Wv 
on V ,  that which can be generated from Frank‘s [8] polar plot of slowness, and that which 
is obtained by truncating the ‘em’ of the Taylor et al VV plot [3]. Therefore, we see how 
the equilibrium shape W,, evolves toward the limiting growth shape Wv. 

In general, the characteristic rays will begin intersecting after some finite time; that is, 
shocks will develop (figure 3(b)). After the time of the first intersection, the curve C will 
not be a simple closed curve, but instead wiU develop ‘ a s ’ .  Of course, there is no physical 
meaning for these ears so the natural procedure is to terminate any characteristics which 
reach such a shock 131. Thus the curve C loses any initial orientation whose corresponding 
characteristic hits the shock. 

4. Local curvature evolution 

The result displayed in figure 3 is confirmed by a general analysis of the curvature evolution. 
We utilize the basic differential geometry of curves in the plane (see the appendix). With 
the curve parametrized by 8 rather than U or s, we derive the local curvature evolution 
equation 

K* F a K  
ar 
_ = _  (7) 

where z (V  + V”),  the primes denote differentiation with respect to theta, and ajar 
gives the rate of change at fixed 8 as distinguished From that at fixed U. We call the 
‘velocity stiffness’ in analogy with surface stiffness. 

The derivation of (7) depends solely on identities of differential geometry and does not 
require us to specify a rule for V. Thus, at this point the physics of the problem for an 
arbitrary shape is unspecified, and we are poised to address a variety of two-dimensional 
interfacial evolution problems. In order to study idealized diffusion-limited growth, similar 
evolution equations have been presented previously [4,5]. An important distinction is that, 
for a given driving force, our growth law V, and hence the velocity stiffness, depends only 
on 8 and not K or its derivatives. 

Any seed crystal relevant to our analysis is convex, K 2 0, but need not be strictly 
convex, K > 0. For finite F, the solution of (7) is given by 

(8) 
Ki 

K =  
1 + K [ B r  . 

Angenent [26] has found behaviour similar to (8) for a more general class of problems. 
We consider the three cases of orientations with = 0, and 
orientations with B 4 o (figure 4). 

z 0, the curvature will 
decrease monotonically in time from the initial value. This result is quantitatively consistent 
with the solution to (3), qualitatively consistent with the experimental behaviour mentioned 
above, and qualitatively consistent with our model of kinetically constrained minimization 
of surface Free energy wherein the rough orientations take the shape of an expanding 
equilibrium crystal [9] .  It is also trivially correct for isotropic surface free energy, e.g. 
a liquid drop. We can get some insight into our model velocity given in (6) by looking 
at, for example, the orientaion 8 = lr/4 with n = 4. In this case ?(n/4) = crap + SVf. 
Therefore, for small 6p the rate of curvature decrease incremes with @. 

> 0, orientations with 

At non-faceted orientations with initial curvature K ~ ,  and 
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Figure 4. A plot of for 0 c 6 < n/2.  (0) m = p = 2 (b)  m = 4, p = 2. 

In general, v will be zero for certain orientations which we denote 6. For these 
orientations, the curvature remains constant. In our model velocity function, has two 
zeros between each facet orientation and the centre of the rough orientations. In the case 
n = 4, there are a total of sixteen values of 6 (figure 4). 

For orientations with .i. < 0 the solution in (8) gives a finite time curvature divergence 
at time-t = - (K?) -  '. The minimum 'blow-up' time corresponds to the orientation for 
which V is minimum. We conjecture that the shock begins developing before the minimum 
blow-up time, and that the characteristics for orientations with .i. < 0 hit the shock before 
the blow-up time corresponding to their orientations. We have numerical evidence for this 
conjecture in the case of our model velocity, and we observe corners on the evolving shape, 
but never curvature divergence. 

For closed curves, shape preserving growth is not synonymous with a vanishing time 
derivative in (7) (e.g. an expanding circle preserves overall shape with decreasing curvature), 
although for open curves shape preserving solutions can be obtained with this constraint 
(e.g. needle crystals) [5 ] .  For orientations such that 0, the long time limit of (8), 
K = l/vrs, tells us that the local shape loses memory of the ~ i .  only i f ~ i  > 0, at such 
an orientation. Thus, under these conditions, an initial seed that is everywhere convex will 
have an asymptotic curvature that is independent of its initial value at any orientation. 

Our analysis of (7) is related to the work of Frank [8] and Chernov [ll]. In analogy to 
the invariance of the chemical potential on the surface of an equilibrium crystal, Frank and 
Chemov showed that there are steady, shape-preserving solutions for interfacecontrolled 
growth, that satisfy the invariance of the 'kinematic potential' K C  = i (s) .  This invariance 
is the classical constraint for limiting growth shapes. The i ( r )  is a 'constant' nagrange 
parameter) at each time consisting of an arbitrary constant and a decreasing function of 
time, which provides the length scale of the steady shape. (The invariance of the kinematic 
potential is equivalent to the Euler-Lagrange equation resulting from the variational solution 
of the problem of finding the slowest growth shape of all shapes of a given volume at each 
time.) The interpretation is analogous to the Gibbs-Thomson-Herring equation for an 
equilibrium crystal shape, where t plays the role of Sp [9], in the overall expansion of 
a geometrically similar object. The simplest choice of the Lagrange parameter results in 
 KC = 1, which is equivalent to the asymptotic solution of (8). Hence, the invariance is 
a special case of a more general curvature evolution, and cannot be valid for an arbitrary 
initial shape. As pointed out above, the long time solution is not valid for orientations 
where ~j = 0. The invariance of the kinematic potential in the Frank-Chernov approach is 
thus a rigorous constraint only for strictly convex initial shapes. 
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5. Conelusion 

In any real crystal growth situation one can hope to begin growth from an equilibrium shape, 
but it is the transient shape that one observes, until and if steady state is reached. We have 
considered other, more complicated treatments of particular transient effects. For example, 
one might model the surface diffusion processes via a term V I  on the right-hand side of 
(3) rather than as a periodic modulation of the rough growth rate. However, in the most 
general case the local arc length need not be preserved, which is equivalent to the choice of 
an 'orthogonal gauge' wherein only the normal growth rule affects the crystal shape [27]. 
Hence, V determines solely how the points parametrized by U move along the curve, but it 
cannot play an explicit role in the shape evolution. 

The polygonalization of crystals growing under the conditions we have studied is known. 
The key to our results is that they indicate this polygonalization is achieved by decreming 
curvature in rough orientations. In other words, we have found that the transient evolution 
of an equilibrium shape W,, containing facets and rough orientations, toward the limiting 
growth shape W V ,  involves a discrete loss in surface orientations. Such an evolution is 
not captured in a model in which curvature increases in those orientations because the loss 
of surface orientations can be asymptotically continuous. We have also found the classical 
constraint of the invariance of the kinematic potential as a special case of a general solution 
to a local evolution equation for curvature. The invariance holds only when the initial shape 
is strictly convex, so that one cannot apply it to the study of asymptotic forms of arbitrary, 
and in particular partially faceted, initial shapes. 

A fully faceted crystal contains no surface which can easily accept accreting material. 
Consistent with OUI previous result 191 (depending on the size of the crystal, and whether 
growth takes place in a diffusive medium), such a surface state defines a reasonable 
lower bound for kinetic roughening of the facets themselves, or the onset of either shape 
instabilities or oscillations [16]. When the critical nucleation size of a seed crystallite 
is smaller than the diffusion length in the background material, our model indicates that 
the initial stage of dendritic growth (or a similar shape instability) is conirolled by near- 
equilibrium microscopic dynamics rather than multiple scalsapi l lary and diffusive- 
interactions. 
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Appendix. Curvature evolution 

We outline here the derivation of (7), the curvature evolution equation for an arbitrary 
normal growth law V .  First, we invoke the Frenet equations, 

_ = _  aM K I  a i  
as as 
- =KN and 
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where aslax = K .  We next use the arc length s to parametrize 7, K and N ,  which by 
definition are 

J S Wenlaufer er a1 

In analogy with the approach of Gage and Hamilton 141 we then compute the following 
identities: 

A more detailed inquiry along these l i e s  will be presented elsewhere [25], but here we give 
a brief description of each expression in turn. Since the metric W measures the length of an 
infinitesimal displacement on the boundary, the dilation of the boundary is represented in the 
first expression. This is obtained by computing a , ( 7 . 7 ) .  The commutation relation that 
follows utilizes the first result, and the next two results describe how I, and the angle 6' that 
defines it, rotate at each point of the curve by an amount which depends on the anisotropy 
of V .  Note that @/at), # @/at),, so [(alar),,, (a/au),] = 0, and when combining (A3) 
and (A4) a non-local integro-differential curvature evolution equation is obtained (e.g. [4] 
(Gage and Hamilton) or [27]) which can be written 

When parametrizing the curve by e rather than U or s the curvature evolution equation 
becomes strictly local 141 since (a/atIs = (a/ar), - (as/ar)a/ae a /aT:  

where = (V + V") ,  and the primes denote 8/86. The variable r is defined above, 
and one should keep in mind that it is the relevant time variable when thinking about local 
curvature evolution with K paramehized by 6.  Note the contrast between the curvature decay 
behaviour in (8) and the weaker curvature decay behaviour in the case V = C K ,  c = constant; 
the 'curveshortening equation'. We find a different exponent for the solution of this equation 
with a circle of initial curvature ~i having curvature decay K = ( ~ i / ( l  t c ~ i t ) ) ] ' ~ .  
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